These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ligand Exchange at a Covalent Surface Enables Balanced Stoichiometry in III-V Colloidal Quantum Dots. Author: Choi MJ, Sagar LK, Sun B, Biondi M, Lee S, Najjariyan AM, Levina L, García de Arquer FP, Sargent EH. Journal: Nano Lett; 2021 Jul 28; 21(14):6057-6063. PubMed ID: 34250796. Abstract: III-V colloidal quantum dots (CQDs) are promising semiconducting materials for optoelectronic applications; however, their strong covalent character requires a distinct approach to surface management compared with widely investigated II-VI and IV-VI CQDs-dots, which by contrast are characterized by an ionic nature. Here we show stoichiometric reconstruction in InAs CQDs by ligand exchange. In particular, we find that indium-carboxylate ligands, which passivate as-synthesized InAs CQDs and are responsible for In-rich surfaces, can be replaced by anionic ligands such as thiols. This enables the production of inks consisting of balanced-stoichiomety CQDs; this is distinct from what is observed in II-VI and IV-VI CQDs, in which thiols replace carboxylates. The approach enables the implementation of InAs CQD solids as the active layer in photodiode detectors that exhibit an external quantum efficiency of 36% at 930 nm and a photoresponse time of 65 ns, which is 4 times shorter than that of reference PbS CQD devices.[Abstract] [Full Text] [Related] [New Search]