These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: miR-100-5p in human umbilical cord mesenchymal stem cell-derived exosomes mediates eosinophilic inflammation to alleviate atherosclerosis via the FZD5/Wnt/β-catenin pathway.
    Author: Gao H, Yu Z, Li Y, Wang X.
    Journal: Acta Biochim Biophys Sin (Shanghai); 2021 Aug 31; 53(9):1166-1176. PubMed ID: 34254638.
    Abstract:
    Exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSC-Ex) play important roles in immune and inflammation diseases. However, the role of hUCMSC-Ex in atherosclerosis has not been elucidated. In this study, the isolated exosomes were identified by transmission electron microscopy and nanoparticle tracking analysis. Exosome marker protein levels were increased in the hUCMSC-Ex compared with those in hUCMSC suspension, indicating that exosomes were successfully isolated from hUCMSCs. Furthermore, eosinophils were treated with oxidized low-density lipoprotein (ox-LDL) to construct inflammation model and then incubated with hUCMSC-Ex derived from hUCMSCs which were transfected with miR-100-5p mimic or miR-100-5p inhibitor. We found that hUCMSC-Ex increased miR-100-5p expression, inhibited cell migration, promoted cell apoptosis, and reduced inflammatory cytokine levels in ox-LDL-treated eosinophils, and miR-100-5p overexpression in hUCMSCs enhanced these effects, while miR-100-5p inhibition reversed these effects. Moreover, frizzled 5 (FZD5) was a target gene of miR-100-5p. FZD5 overexpression reversed the inhibitory effects of hUCMSC-Ex-miR-100-5p on cell progression and inflammation in eosinophils. Additionally, hUCMSC-Ex-miR-100-5p decreased the expression of cyclin D1 and β-catenin proteins. Wnt/β-catenin pathway activator BML-284 effectively reversed the effects of hUCMSC-Ex-miR-100-5p on cell progression and inflammation in eosinophils. ApoE-/- mice were fed with high-fat diet to construct an atherosclerosis mice model, and hUCMSC-Ex was injected into mice. hUCMSC-Ex reduced atherosclerotic plaque area and inflammation response in atherosclerosis mice. This study demonstrates that hUCMSC-Ex-miR-100-5p inhibits cell progression and inflammatory response in eosinophils via the FZD5/Wnt/β-catenin pathway, thereby alleviating atherosclerosis progression.
    [Abstract] [Full Text] [Related] [New Search]