These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effects of neuronal cell differentiation on TRPM7, TRPM8 and TRPV1 channels in the model of Parkinson's disease.
    Author: Öz A, Çelik Ö.
    Journal: Neurol Res; 2022 Jan; 44(1):24-37. PubMed ID: 34256685.
    Abstract:
    Transient Receptor Potential Melastatin-like 7 (TRPM7), Transient Receptor Potential Melastatin-like 8 (TRPM8) and Transient Receptor Potential Vanilloid-like 1 (TRPV1) channels are expressed in neurological tissues such as brain cortex, dorsal root ganglion and hippocampal neurons and involved in several neurological diseases. The SH-SY5Y neuronal cell line is frequently used as a cellular model of neurodegenerative diseases including Parkinson's disease. The differentiated SH-SY5Y cells have much neuronal structure, function and exaggerated neuronal marker expression. However, we have less data about how differentiation induces TRP channel expression and how TRP channels have a role in cellular functions in Parkinson's disease model in SH-SY5Y cells. Hence, we aimed to investigate the effects of differentiation phenomena on TRPM7, TRPM8 and TRPV1 cation channel expression and related Ca2+ signaling. We also made some other analysis to elucidate TRP channels' function in MPP induced apoptosis, mitochondrial membrane potential levels, intracellular reactive oxygen species production, caspase 3 and caspase 9 enzyme activities in differentiated or undifferentiated SH-SY5Y neuronal cells. Herein we concluded that TRPM7, TRPM8 and TRPV1 cation channels have pivotal effects on differentiation and MPP induced Parkinson's disease model in SH-SY5Y cells.
    [Abstract] [Full Text] [Related] [New Search]