These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bcl-2/Bcl-xL inhibitor ABT-263 overcomes hypoxia-driven radioresistence and improves radiotherapy. Author: Ritter V, Krautter F, Klein D, Jendrossek V, Rudner J. Journal: Cell Death Dis; 2021 Jul 13; 12(7):694. PubMed ID: 34257274. Abstract: Hypoxia, a characteristic of most human solid tumors, is a major obstacle to successful radiotherapy. While moderate acute hypoxia increases cell survival, chronic cycling hypoxia triggers adaptation processes, leading to the clonal selection of hypoxia-tolerant, apoptosis-resistant cancer cells. Our results demonstrate that exposure to acute and adaptation to chronic cycling hypoxia alters the balance of Bcl-2 family proteins in favor of anti-apoptotic family members, thereby elevating the apoptotic threshold and attenuating the success of radiotherapy. Of note, inhibition of Bcl-2 and Bcl-xL by BH3-mimetic ABT-263 enhanced the sensitivity of HCT116 colon cancer and NCI-H460 lung cancer cells to the cytotoxic action of ionizing radiation. Importantly, we observed this effect not only in normoxia, but also in severe hypoxia to a similar or even higher extent. ABT-263 furthermore enhanced the response of xenograft tumors of control and hypoxia-selected NCI-H460 cells to radiotherapy, thereby confirming the beneficial effect of combined treatment in vivo. Targeting the Bcl-2 rheostat with ABT-263, therefore, is a particularly promising approach to overcome radioresistance of cancer cells exposed to acute or chronic hypoxia with intermittent reoxygenation. Moreover, we found intrinsic as well as ABT-263- and irradiation-induced regulation of Bcl-2 family members to determine therapy sensitivity. In this context, we identified Mcl-1 as a resistance factor that interfered with apoptosis induction by ABT-263, ionizing radiation, and combinatorial treatment. Collectively, our findings provide novel insights into the molecular determinants of hypoxia-mediated resistance to apoptosis and radiotherapy and a rationale for future therapies of hypoxic and hypoxia-selected tumor cell fractions.[Abstract] [Full Text] [Related] [New Search]