These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Control of discharge patterns of medullary respiratory neurons by pulmonary vagal afferent inputs. Author: Zuperku EJ, Hopp FA. Journal: Am J Physiol; 1987 Dec; 253(6 Pt 2):R809-20. PubMed ID: 3425759. Abstract: To provide a better understanding of the central mechanisms by which pulmonary afferents reflexly control breathing, the responses of single respiratory neurons to vagal afferent patterns were analyzed. Respiratory-related unit (RRU) recordings were obtained from inspiratory (I), expiratory (E), and phase-spanning neurons in the ventral medulla of halothane-anesthetized, paralyzed, ventilated, vagotomized, mongrel dogs. Electrical stimulation of the largest vagal fibers was used to reflexly alter I and E durations (TI and TE) and to present various temporal input patterns to RRU. The net response was quantified by taking the difference between cycle-triggered histograms (CTH) of activity obtained during an input and the spontaneous control (no input) CTH. For step frequency patterns confined to either the I or E phase, 127 responses in 41 neurons were analyzed. The average step response time was greater than 500 ms. In general the time courses of the control and test-input discharge patterns were linearly related to one another. For I neurons the slopes (beta) of these relationships were linear functions of the vagal step frequency (Fv). Linear relationships were also obtained for 1/TI vs. Fv and 1/beta vs. TI. These results suggest that the vagal control of the discharge patterns of these neurons and phase timing is mediated via a process similar to gain modulation.[Abstract] [Full Text] [Related] [New Search]