These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Quantitative analysis of the cytosolic-free-Ca2+-dependency of aldosterone production in bovine adrenal glomerulosa cells. Different requirements for angiotensin II and K+.
    Author: Capponi AM, Lew PD, Vallotton MB.
    Journal: Biochem J; 1987 Oct 15; 247(2):335-40. PubMed ID: 3426540.
    Abstract:
    Angiotensin II (AII) and K+ raise the cytosolic free Ca2+ concentration [( Ca2+]i) and stimulate aldosterone production in isolated bovine adrenal glomerulosa cells. The mechanisms leading to an elevation of [Ca2+]i were analysed with the fluorescent Ca2+ probe quin 2. (1) Whereas [Ca2+]i rose transiently and returned to basal values within 5 min in response to AII, the effect of K+ was sustained for at least 15 min. (2) AII released Ca2+ from intracellular stores, whereas the [Ca2+]i response to K+ depended solely on extracellular [Ca2+]. (3) When added after K+ stimulation, AII provoked a dramatic decrease in [Ca2+]i to below the resting value. The role of [Ca2+]i in stimulating steroidogenesis was determined by manipulating the concentration of this cation. (4) In a cell superfusion system, the aldosterone response to AII is biphasic. Suppressing the transient [Ca2+]i elevation triggered by AII resulted in the disappearance of the initial secretory peak, but the final production rate was similar to that of control cells. (5) Normal basal [Ca2+]i levels were, however, necessary to maintain continuous AII-induced steroidogenesis. (6) When added after AII, the antagonist analogue [Sar1,Ala8]AII suppressed steroidogenesis without affecting [Ca2+]i levels. (7) In contrast, continuously elevated [Ca2+]i values were required for the initiation and the maintenance of K+-stimulated aldosterone production. These results demonstrate important differences in the mechanisms through which AII and K+ activate the Ca2+ messenger system. Moreover, functional correlations have shown that K+, but not AII, depends solely on a sustained [Ca2+]i response for its steroidogenic effect. However, the AII-induced effect is also a Ca2+-requiring process: the initial [Ca2+]i transient accelerates the onset of steroidogenesis, which is subsequently extremely sensitive to [Ca2+]i decreases below normal basal levels.
    [Abstract] [Full Text] [Related] [New Search]