These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MicroRNA-25-3p promotes cisplatin resistance in Non-small-cell lung carcinoma (NSCLC) through adjusting PTEN/PI3K/AKT route.
    Author: Sun B, Hu N, Cong D, Chen K, Li J.
    Journal: Bioengineered; 2021 Dec; 12(1):3219-3228. PubMed ID: 34266345.
    Abstract:
    MicroRNAs exert crucial effects in the drug resistance. The purpose of this research was to investigate the miR-25-3p effects on DDP resistance in NSCLC. We used RT-qPCR to evaluate the expression of miR-25-3p. Cell growth was determined using MTS assay. Cellular bio-activity was analyzed via Colony formation, Annexin V/PI, and Transwell assay. Luciferase reporter assay was used to determine miR-25-3p and PTEN binding. Western blot was used to determine PTEN, PI3K, p-AKT/AKT expression. In-vivo study was used to determine the effects of miR-25-3p on the tumor growth. Expression of miR-25-3p is increased in NSCLC cisplatin resistant A549 and H1299 cells. Furthermore, miR-25-3p mimic enhanced drug resistance, and accelerated cell invasion and metastasis. Moreover, miR-25-3p mimic resulted in the activation of PTEN/PI3K/AKT pathway. However, miR-25-3p inhibitors exhibited the opposite trend. We further identified PTEN as a potential target of miR-25-3p. PTEN knockout promoted cisplatin resistance, while PTEN mimic displayed opposite effects. Interestingly, miR-25-3p further boosted cisplatin resistance cells in vivo, and miR-25-3p inhibitors reduced the in-vivo tumor volume. MiR-25-3p/PTEN/PI3K/AKT axis might accelerate DDP tolerance in NSCLC, which may serve as a potential target for chemotherapy resistance in NSCLC.
    [Abstract] [Full Text] [Related] [New Search]