These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Associations of fine particulate matter and constituents with pediatric emergency room visits for respiratory diseases in Shanghai, China. Author: Wu Y, Jin T, He W, Liu L, Li H, Liu C, Zhou Y, Hong J, Cao L, Lu Y, Dong X, Xia M, Ding B, Qian L, Wang L, Zhou W, Gui Y, Zhang X, Chen R. Journal: Int J Hyg Environ Health; 2021 Jul; 236():113805. PubMed ID: 34271373. Abstract: BACKGROUND: Although ambient fine particulate matter (PM2.5) has been associated with adverse respiratory outcomes in children, few studies have examined PM2.5 constituents with respiratory diseases in children in China. OBJECTIVES: To investigate the associations of short-term exposure to PM2.5 and its constituents with pediatric emergency room visits (ERVs) for respiratory diseases in Shanghai, China. METHODS: We collected daily concentrations of PM2.5 and its constituents in urban Shanghai from January 1, 2016, to December 31, 2018. Daily pediatric ERVs for four major respiratory diseases, including upper respiratory tract infection, bronchitis, pneumonia, and asthma, were obtained from 66 hospitals in Shanghai during the same period. Associations of exposure to daily PM2.5 and constituents with respiratory ERVs were estimated using the over-dispersed generalized additive models. RESULT: Short-term exposure to PM2.5 and its constituents were associated with increased pediatric ERVs for respiratory diseases. Specifically, an interquartile range increase in the 3-day average PM2.5 level (31 μg/m3) was associated with 1.86% (95%CI: 0.52, 3.22), 1.53% (95%CI: 0.01, 3.08), 1.90% (95%CI: 0.30, 3.52), and 2.67% (95%CI: 0.70, 4.68) increase of upper respiratory tract infection, bronchitis, pneumonia, and asthma ERVs, respectively. As for PM2.5 constituents, we found organic carbon, ammonium, nitrate, selenium, and zinc were associated with higher risk of respiratory ERVs in the single constituent and the constituent-PM2.5 models. CONCLUSION: Short-term exposure to PM2.5 was associated with increased pediatric ERVs for respiratory diseases. Constituents related to anthropogenic combustion and traffic might be the dominant contributors of the observed associations.[Abstract] [Full Text] [Related] [New Search]