These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Universality classes of the domain-wall creep motion driven by spin-transfer torques.
    Author: Jin MH, Xiong L, Zhou NJ, Zheng B, Zhou TJ.
    Journal: Phys Rev E; 2021 Jun; 103(6-1):062119. PubMed ID: 34271735.
    Abstract:
    With the stochastic Landau-Lifshitz-Gilbert equation, we numerically simulate the creep motion of a magnetic domain wall driven by the adiabatic and nonadiabatic spin-transfer torques induced by the electric current. The creep exponent μ and the roughness exponent ζ are accurately determined from the scaling behaviors. The creep motions driven by the adiabatic and nonadiabatic spin-transfer torques belong to different universality classes. The scaling relation between μ and ζ based on certain simplified assumptions is valid for the nonadiabatic spin-transfer torque, while invalid for the adiabatic one. Our results are compatible with the experimental ones, but go beyond the existing theoretical prediction. Our investigation reveals that the disorder-induced pinning effect on the domain-wall rotation alters the universality class of the creep motion.
    [Abstract] [Full Text] [Related] [New Search]