These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A global review of rubber plantations: Impacts on ecosystem functions, mitigations, future directions, and policies for sustainable cultivation.
    Author: Singh AK, Liu W, Zakari S, Wu J, Yang B, Jiang XJ, Zhu X, Zou X, Zhang W, Chen C, Singh R, Nath AJ.
    Journal: Sci Total Environ; 2021 Nov 20; 796():148948. PubMed ID: 34273842.
    Abstract:
    The growing global need for latex is driving rubber plantation (RP) expansion since the last century, with >2 Mha of cultivation area being established in the last decade. Southeast Asia is the hotspot for rubber cultivation at other land-use costs. Although rubber cultivation has improved the economic status of farmers, it has altered the habitat's ecology and ecosystem functions (EF). However, studies on the impacts of RP on EF are limited, and a clear overview is not available. To bridge this gap, we conducted an inclusive review of the EF of RP, including soil carbon storage, aboveground biomass (AGB) and belowground biomass (BGB), litter production and decomposition, respiration, and biodiversity (plants, animals, soil fauna, and microbes). We compared the EF in RP (monoculture) with those in forests because the conversion of forests to RP is prevalent in the tropics and because most RP studies used forests as reference ecosystems. We found RP generally have lower EF than forests. The impacts of RP on some EF are more severe (e.g., AGB, BGB, and plant diversity), causing decreases of >55%, and the effects are consistently negative irrespective of plantation age. However, including agroforestry or polyculture, integrated pest management, cover cropping, mulching, and composting can improve the EF in RP to some extent. We highlighted research gaps, particularly substantial research gaps concerning the influence of plant diversity treatments (i.e., agroforestry) performed in RP on EF. Additionally, more empirical data on the significance of spatial and temporal levels are required, such as how the impact on EF could vary with climate and RP age, as we showed some examples where EF differs spatially and temporally. More importantly, further research on plantation management to offset EF losses is needed. Finally, we emphasized knowledge gaps and suggested future directions and policies for improving EF in RP.
    [Abstract] [Full Text] [Related] [New Search]