These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of soft bi-layer coating on the protection of turtle carapace.
    Author: An B, Sun W, Zhang D.
    Journal: J Biomech; 2021 Sep 20; 126():110618. PubMed ID: 34274868.
    Abstract:
    The turtle carapace is a biological armor exhibiting enhanced protection performance. Despite considerable efforts to characterize the structure-property relations of the turtle carapace, how the design of soft keratin-collagen bi-layer coating contributes to the protection of this biological armor remains largely unknown. In this study, calculations are carried out for fracture of the turtle carapace subjected to impact loading. The dynamic fracture of the bone layer, plastic deformation of the keratin-collagen bi-layer, and delamination at the keratin-collagen and collagen-bone interfaces are accounted for in the analyses. We reveal that plastic deformation and interfacial delamination within the soft bi-layer coating are two toughening mechanisms controlling the resistance to dynamic crack growth in the bone layer of the turtle carapace. The architecture of the keratin-collagen bi-layer coating enables large plastic deformation in the collagen layer and multiple delaminations within the bi-layer coating, preventing crack propagation in the bone layer. It is found that the dynamic fracture of bone layer in the turtle carapace depends on the stiffness mismatch and yield stress contrast between the keratin layer and the collagen layer. As the stiffness mismatch increases, small plastic deformation of the bi-layer coating occurs and the plastic deformation of collagen layer tends to emerge in the vicinity of the keratin-collagen interface, suppressing interfacial delamination and leading to weak resistance to fracture of the bone layer. The intermediate level of yield stress contrast can activate large plastic deformation and multiple delaminations within the bi-layer coating, mitigating fracture of the bone layer.
    [Abstract] [Full Text] [Related] [New Search]