These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Maturity alters drop vertical jump landing force-time profiles but not performance outcomes in adolescent females.
    Author: Pedley JS, DiCesare CA, Lloyd RS, Oliver JL, Ford KR, Hewett TE, Myer GD.
    Journal: Scand J Med Sci Sports; 2021 Nov; 31(11):2055-2063. PubMed ID: 34275170.
    Abstract:
    The stretch-shortening cycle (SSC) assists in effective force attenuation upon landing and augments force generation at take-off during a drop vertical jump (DVJ). General performance outcomes such as jump height or peak measures have been used to assess SSC function in youth populations; however, these discrete metrics fail to provide insight into temporal jump-landing characteristics. This study assessed DVJ force-time profiles in 1013 middle and high-school female athletes (n = 279 prepubertal, n = 401 pubertal, and n = 333 postpubertal). Maturity status was determined using the Pubertal Maturation Observation Scale. Ground reaction force data were analyzed to extract a range of variables to characterize force-time profiles. SSC function was categorized as poor, moderate, or good dependent on the presence of an impact peak and spring-like behavior. No differences in jump height or ground contact time were observed between maturity groups (p > 0.05). Significant differences in absolute peak landing and take-off force were evident between all maturational statuses (p < 0.05). Relative to bodyweight normalized forces, only peak take-off force was significantly different between prepubertal and postpubertal groups (p < 0.05; d = 0.22). Spring-like behavior showed small improvements from pubertal to postpubertal (p < 0.05; d = 0.25). Most females displayed poor SSC function at prepubertal (79.6%), pubertal (77.3%), and postpubertal (65.5%) stages of maturity. Large increases in absolute forces occur throughout maturation in female athletes; however, only small maturational differences were found in relative force or spring-like behavior. Consequently, most girls display poor SSC function irrespective of maturity.
    [Abstract] [Full Text] [Related] [New Search]