These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: TRAF2 Is a Novel Ubiquitin E3 Ligase for the Na,K-ATPase β-Subunit That Drives Alveolar Epithelial Dysfunction in Hypercapnia.
    Author: Gabrielli NM, Mazzocchi LC, Kryvenko V, Tello K, Herold S, Morty RE, Grimminger F, Dada LA, Seeger W, Sznajder JI, Vadász I.
    Journal: Front Cell Dev Biol; 2021; 9():689983. PubMed ID: 34277634.
    Abstract:
    Several acute and chronic lung diseases are associated with alveolar hypoventilation leading to accumulation of CO2 (hypercapnia). The β-subunit of the Na,K-ATPase plays a pivotal role in maintaining epithelial integrity by functioning as a cell adhesion molecule and regulating cell surface stability of the catalytic α-subunit of the transporter, thereby, maintaining optimal alveolar fluid balance. Here, we identified the E3 ubiquitin ligase for the Na,K-ATPase β-subunit, which promoted polyubiquitination, subsequent endocytosis and proteasomal degradation of the protein upon exposure of alveolar epithelial cells to elevated CO2 levels, thus impairing alveolar integrity. Ubiquitination of the Na,K-ATPase β-subunit required lysine 5 and 7 and mutating these residues (but not other lysines) prevented trafficking of Na,K-ATPase from the plasma membrane and stabilized the protein upon hypercapnia. Furthermore, ubiquitination of the Na,K-ATPase β-subunit was dependent on prior phosphorylation at serine 11 by protein kinase C (PKC)-ζ. Using a protein microarray, we identified the tumor necrosis factor receptor-associated factor 2 (TRAF2) as the E3 ligase driving ubiquitination of the Na,K-ATPase β-subunit upon hypercapnia. Of note, prevention of Na,K-ATPase β-subunit ubiquitination was necessary and sufficient to restore the formation of cell-cell junctions under hypercapnic conditions. These results suggest that a hypercapnic environment in the lung may lead to persistent epithelial dysfunction in affected patients. As such, the identification of the E3 ligase for the Na,K-ATPase may provide a novel therapeutic target, to be employed in patients with acute or chronic hypercapnic respiratory failure, aiming to restore alveolar epithelial integrity.
    [Abstract] [Full Text] [Related] [New Search]