These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Facile one-step synthesis of 3D honeycomb-like porous chitosan bead inlaid with MnFe bimetallic oxide nanoparticles for enhanced degradation of dye pollutant.
    Author: Yang J, Ao Z, Niu X, Dong J, Wang S, Wu H.
    Journal: Int J Biol Macromol; 2021 Sep 01; 186():829-838. PubMed ID: 34280446.
    Abstract:
    Developing a sustainable, efficient and recyclable heterogeneous Fenton-like catalyst is important to wastewater treatment. Herein, well-dispersed MnO2 and Fe3O4 nanoparticles inlaid in chitosan beads (MnO2-Fe3O4/CH) was firstly fabricated and employed in the degradation of methylene blue (MB). The bead was prepared via a facile one-step method by dropwise addition of chitosan-metal salt solution into alkaline solution. Comparing with monometallic chitosan beads (MnO2/CH, Fe3O4/CH) and naked MnO2-Fe3O4, MnO2-Fe3O4/CH displayed significantly higher activity for MB degradation with the assistance of hydrogen peroxide (H2O2), finally removing 96.8% MB under the optimal conditions (50 mg L-1 MB, 4.0 g L-1 catalyst, 30 g L-1 H2O2, pH = 7, 60 min). Based on a series of characterizations, the large surface area (60.1 m2 g-1), well-developed porosity (0.3 cm3 g-1), and intensified electron transport of MnO2-Fe3O4/CH consequently enhanced the catalytic performance via a synergistic effect. Because the specific porous structure of MnO2-Fe3O4/CH facilitated the adsorption/diffusion of reactants and exposure of active sites. Meanwhile, the electron transfer from Mn3+ to Fe3+ accelerated the Fe3+/Fe2+ cycle, which favored the production of dominant reactive species hydroxyl radical for MB degradation. Besides, the magnetic beads could be easily collected from the solution and reused for five times with a negligible leaching.
    [Abstract] [Full Text] [Related] [New Search]