These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Clusters-based silver nanorings: An active substrate for surface-enhanced Raman scattering.
    Author: Hossain MK, Drmosh QA.
    Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec 15; 263():120141. PubMed ID: 34280795.
    Abstract:
    Plasmonic nanostructures, particularly irregular surfaces of ring-like silver (Ag) nanostructures are promising candidates in surface-enhanced Raman scattering (SERS) spectroscopy. In this work, clusters-based Ag nanorings have been fabricated and characterized as SERS-active substrates. The rim of the as-fabricated Ag nanorings was found neither discontinuous nor linear aggregation of nanoparticles. High-resolution field emission scanning electron microscopy (FESEM) revealed that the individual constituent clusters were different from each other, particularly in terms of size and shape in addition to the cases how such clusters were emerged as the edge of the nanoring. Considering the dimensions of the clusters and the arrangement of such clusters as nanorings, it was speculated that the local electromagnetic (EM) near-field distributions would excel and thus enhanced SERS signals would be achieved. Indeed, the inherent features of the nanorings facilitated to achieve SERS enhancement factors as high as 2.1 × 104. SERS-activity of as-fabricated Ag nanorings was confirmed using Rhodamine 6G (R6G) as Raman-active dyes and the enhancement was compared to those obtained from R6G adsorbed on Ag-ZnO/Glass and ZnO/Glass. To the best of our knowledge, this is the first attempt to explore the impact of localized EM near-field within the segments of nanorings through SERS spectroscopy. A model was designed resembling the nanorings under this investigation to simulate EM near-field distributions by finite difference time domain (FDTD) analysis. The dimensions of the model geometry were chosen according to the observations achieved by FESEM. To simplify the simulations, nanoobjects were considered spherical and organized in a periodic fashion, although the constituent clusters of Ag nanorings were found irregular in shape and arrangement. Since EM near-field distribution highly depends on interparticle gaps, three scenarios were implemented, such as, small gap in between two adjacent nanoobjects and adjacent nanoobjects in touch and overlapped. Each configuration was simulated and EM near-field distribution was extracted for s-, p- and 450 of incident polarizations followed by a plausible correlation to SERS enhancements. Such correlated investigations as well as clusters-based Ag nanorings not only inspire the ones to look for cost-effective SERS-active substrate, but also understand the underlying EM mechanism in SERS enhancements.
    [Abstract] [Full Text] [Related] [New Search]