These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nitrous oxide fluxes from long-term limed soils following P and glucose addition: Nonlinear response to liming rates and interaction from added P. Author: Liang Z, Elsgaard L. Journal: Sci Total Environ; 2021 Nov 25; 797():148933. PubMed ID: 34298361. Abstract: Liming of acidic soils to regulate pH for crop growth may decrease emissions of nitrous oxide (N2O) due to direct effects of pH on the synthesis of N2O reductases by denitrifying bacteria. However, liming also changes general pH-dependent soil properties, including availability of phosphorus (P), with a feedback on N2O fluxes that remains largely unknown. Here we used a mesocosm approach to study the combined role of liming and P in regulating N2O fluxes from denitrification in an arable coarse sandy soil where N2O emissions under field condition coincided with rainfall events and irrigation, which facilitated anoxia. Soils from three long-term liming treatments (0, 4, and 12 Mg ha-1) with resulting pH(CaCl2) of 3.6, 4.7 and 6.3 were incubated at original bulk density first at 60% water filled pore space (WFPS) and successively at 75% WFPS with added nitrate, inorganic P (0 and 10 μg P g-1 soil) and glucose as labile carbon. N2O fluxes were measured during 28 days and were supplemented with measurements of CO2 fluxes, microbial biomass, potential denitrification, and acid phosphatase activity. The results showed a nonlinear response of N2O fluxes to liming rates, with highest fluxes at the intermediate liming level (4 Mg ha-1). Furthermore, inorganic P stimulated N2O fluxes only at the intermediate liming level. Assays of potential denitrification indicated that the N2O/(N2O + N2) product ratio decreased consistently with increasing liming rates, but total N2O fluxes responded nonlinearly likely due to combined effects on N2O/(N2O + N2) product ratios and total denitrification rates. The results suggest that liming and P addition interact on microbial properties and N2O emissions from acidic arable soils and may not follow linear trends. This makes it uncertain to predict and model the resulting net effect, which may depend on the actual pH range and P availability from the unlimed to the limed treatments.[Abstract] [Full Text] [Related] [New Search]