These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: MicroRNA-103a-3p Promotes Cell Proliferation and Invasion in Non-Small-Cell Lung Cancer Cells through Akt Pathway by Targeting PTEN. Author: Li H, Huhe M, Lou J. Journal: Biomed Res Int; 2021; 2021():7590976. PubMed ID: 34307670. Abstract: BACKGROUND: Increasing evidence has suggested that microRNA- (miR-) 103a-3p is crucial for cancer progression. However, the specific mechanism of miR-103a-3p in non-small-cell lung cancer (NSCLC) remains unclear until now. So, it is particularly urgent to clarify the mechanism between them. METHODS: qRT-PCR and western blot were used to measure the expression of miR-103a-3p, PTEN, Akt, and p-Akt. Cell biology experiment was applied to detect the biological function of miR-103a-3p in NSCLC cell lines. Moreover, bioinformatics analysis, luciferase reporter assay, and functional complementation analysis were carried out to investigate the target gene. RESULTS: miR-103a-3p was highly expressed in primary NSCLC samples and cell lines. miR-103a-3p mimics promoted the proliferation and invasion of NSCLC cells; miR-103a-3p inhibitor had the opposite effect. A double luciferase reporter gene experiment revealed that miR-103a-3p directly targets the PTEN mRNA 3'UTR region. siPTEN inhibited the proliferation and invasion of NSCLC cells. Further mechanistic studies showed that both overexpression of miR-103a-3p and PTEN knockdown reduced the expression of the p-Akt protein. Overexpression of PTEN partially reversed the cancer-promoting effect of miR-103a-3p. CONCLUSION: miR-103a-3p promotes the progression of NSCLC via Akt signaling by targeting PTEN, highlighting the role of miR-103a-3p/PTEN/Akt signaling and suggesting miR-103a-3p as a novel therapeutic target for NSCLC.[Abstract] [Full Text] [Related] [New Search]