These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Formation of a ternary complex: actin, 5'-adenylyl imidodiphosphate, and the subfragments of myosin. Author: Greene LE, Eisenberg E. Journal: Proc Natl Acad Sci U S A; 1978 Jan; 75(1):54-8. PubMed ID: 343111. Abstract: The formation of the ternary complex composed of actin, 5'-adenylyl imidodiphosphate [AMP-P(NH)P], and myosin subfragment 1 (S-1) was studied using the analytical ultracentrifuge with UV optics, which enabled the direct determination of the extent of dissociation of actin.S-1 (acto.S-1) by AMP-P(NH)P. In contrast to the reaction with ATP, at saturating levels of AMP-P(NH)P (1.5 mM), extensive formation of the ternary acto.S-1.AMP-P(NH)P complex occurs at 22 degrees . With 40 muM actin present, AMP-P(NH)P causes almost no dissociation of the acto.S-1 complex at 0.04 M ionic strength, while even at 0.22 M ionic strength one-third of the S-1 remains associated with actin and AMP-P(NH)P in a ternary complex. A detailed study of the binding of S-1.AMP-P(NH)P to actin using the Scatchard plot analysis shows that, at saturation, 1 mol of S-1.AMP-P(NH)P binds per mol of actin monomer. There appears to be no cooperativity occurring as the S-1.AMP-P(NH)P binds along the actin filament, with the possible exception of a slight positive cooperativity when most of the sites on the actin filament are saturated. The turbidity of the ternary complex is identical to the turbidity of acto.S-1 alone. Preliminary experiments with the two-headed subfragment of myosin, heavy meromyosin (HMM), show that the binding of HMM.[AMP-P(NH)P](2) to actin is only about twice as strong as the binding of S-1.AMP-P(NH)P to actin, indicating that the second head contributes very little to the free energy of binding.[Abstract] [Full Text] [Related] [New Search]