These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Harnessing forgetfulness: can episodic-memory tests predict early Alzheimer's disease?
    Author: Warren SL, Moustafa AA, Alashwal H, Alzheimer’s Disease Neuroimaging Initiative.
    Journal: Exp Brain Res; 2021 Sep; 239(9):2925-2937. PubMed ID: 34313791.
    Abstract:
    A rapid increase in the number of patients with Alzheimer's disease (AD) is expected over the next decades. Accordingly, there is a critical need for early-stage AD detection methods that can enable effective treatment strategies. In this study, we consider the ability of episodic-memory measures to predict mild cognitive impairment (MCI) to AD conversion and thus, detect early-stage AD. For our analysis, we studied 307 participants with MCI across four years using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Using a binary logistic regression, we compared episodic-memory tests to each other and to prominent neuroimaging methods in MCI converter (MCI participants who developed AD) and MCI non-converter groups (MCI participants who did not develop AD). We also combined variables to test the accuracy of mixed-predictor models. Our results indicated that the best predictors of MCI to AD conversion were the following: a combined episodic-memory and neuroimaging model in year one (59.8%), the Rey Auditory Verbal Learning Test in year two (71.7%), a mixed episodic-memory predictor model in year three (77.7%) and the Logical Memory Test in year four (77.2%) of ADNI. Overall, we found that individual episodic-memory measure and mixed models performed similarly when predicting MCI to AD conversion. Comparatively, individual neuroimaging measures predicted MCI conversion worse than chance. Accordingly, our results indicate that episodic-memory tests could be instrumental in detecting early-stage AD and enabling effective treatment.
    [Abstract] [Full Text] [Related] [New Search]