These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Disordered mesoporous carbon activated peroxydisulfate pretreatment facilitates disintegration of extracellular polymeric substances and anaerobic bioconversion of waste activated sludge. Author: Zhang R, Lu X, Tan Y, Cai T, Han Y, Kudisi D, Niu C, Zhang Z, Li W, Zhen G. Journal: Bioresour Technol; 2021 Nov; 339():125547. PubMed ID: 34315087. Abstract: The potential of disordered mesoporous carbon (DMC) as catalyst of peroxydisulfate (PDS) to improve sludge solubilization and methane production was investigated. Results showed that DMC activated PDS (DMC/PDS) to produce sulfate radicals (SO4-), facilitating cells rupture and sludge matrix dissociation by degrading the carbonyl and amide groups in organic biopolymers (especially proteins, polysaccharides and humus). At the optimal DMC/PDS dosage of 0.04/1.2 g-mmol/g-VS, SCOD was increased from initial 294.0 to 681.5 mg/L, with the methane production rate of 12.6 mL/g-VS/day. Moreover, DMC could serve as electron mediator to accelerate electron transfer of microorganisms, building a more robust anaerobic metabolic environment. Modelling analysis further demonstrated the crucial role of DMC/PDS pretreatment in biological degradation and methane productivity. This study indicated that DMC/PDS pretreatment can prominently enhance the release of soluble substances and methane production, aiding the utilization of PDS oxidation technology for improving anaerobic bioconversion of sludge.[Abstract] [Full Text] [Related] [New Search]