These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Construction of direct Z-scheme Bi5O7I/UiO-66-NH2 heterojunction photocatalysts for enhanced degradation of ciprofloxacin: Mechanism insight, pathway analysis and toxicity evaluation. Author: Zhao C, Li Y, Chu H, Pan X, Ling L, Wang P, Fu H, Wang CC, Wang Z. Journal: J Hazard Mater; 2021 Oct 05; 419():126466. PubMed ID: 34323704. Abstract: Direct Z-scheme Bi5O7I/UiO-66-NH2 (denoted as BU-x) heterojunction photocatalysts were successfully constructed through ball-milling method. Photocatalytic activities of the as-prepared BU-x samples were determined by using a typical fluoroquinolone antibiotic, ciprofloxacin (CIP). All BU-x heterojunctions exhibited better CIP removal performances than that of pristine Bi5O7I and UiO-66-NH2 upon exposure to white light irradiation. In comparison, the heterojunction with UiO-66-NH2 content of 50 wt% (BU-5) showed excellent structural stability and the optimal adsorption-photodegradation efficiency for the CIP removal. The removal efficiency of CIP (10 mg/L) over BU-5 (0.75 g/L) achieved 96.1% within 120 min illumination. Meanwhile, the effect of photocatalyst dosage, pH and inorganic anions were systemically explored. Reactive species trapping experiments, electron spin resonance (ESR) signals, Mott-Schottky measurements and density functional theory (DFT) simulation revealed that the photo-generated holes (h+), hydroxyl radical (·OH) and superoxide radical (·O2-) played crucial roles in CIP degradation. This result can be ascribed to that the unique Z-scheme charge transfer configuration retained the excellent redox capacities of Bi5O7I and UiO-66-NH2. Meanwhile, the CIP degradation pathways and the toxicity of various intermediates were subsequently analyzed. This work provided a feasible idea for removing antibiotics by bismuth-rich bismuth oxyhalide/MOF-based heterostructured photocatalysts.[Abstract] [Full Text] [Related] [New Search]