These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Stationary monitoring and source apportionment of VOCs in a chemical industrial park by combining rapid direct-inlet MSs with a GC-FID/MS. Author: Huang Y, Gao S, Wu S, Che X, Yang Y, Gu J, Tan W, Ruan D, Xiu G, Fu Q. Journal: Sci Total Environ; 2021 Nov 15; 795():148639. PubMed ID: 34328932. Abstract: Fast and comprehensive monitoring of VOCs, required for air quality management in large-scale chemical industrial parks in China, cannot be accomplished by stationary measurements using conventional GC-FID or GC-MS alone due to their low temporal resolutions and limited detectable ranges. Novel direct-inlet mass spectrometry (DI-MS) has been widely applied for real-time monitoring of VOCs. To verify its applicability in industrial settings, high mass-resolution proton-transfer-reaction time-of-flight MS (HMR-PTR-TOFMS), single-photon ionization time-of-flight MS (SPI-TOFMS), together with online GC-FID/MS were simultaneously deployed at the boundary of one of the largest chemical industrial parks in eastern China. Aromatics, acetonitrile, acetic acid, ethyl acetate, aliphatic hydrocarbons, 1,2-dichloroethane, and acetone were detected as the main pollutants. These three instruments detected 12 common species, among which ethyl acetate, toluene, C8-aromatics, and methyl ethyl ketone showed similar time series and levels. Acetone, benzene, chlorobenzene, styrene, and C9-aromatics showed only similar time series. The HMR-PTR-TOFMS uniquely detected 14 species, mainly oxidized VOCs, nitriles, and amines, which greatly helps acknowledge the pollutants in the chemical industrial area. Positive matrix factorization, using the HMR-PTR-TOFMS and GC-FID/MS datasets, was used to identify eight sources. Four of the identified sources were mainly detected by the HMR-PTR-TOFMS, with pollutants mainly comprised of nitriles, amines, carbonyls, and organic acids, most of which were hazardous and/or odorous. These four sources accounted for 41.5% and 33.2% of the total VOCs and ozone formation potential, respectively. The complementary nature of GC-FID/MS and HMR-PTR-TOFMS in VOC source apportionment in industrial settings is of great practical use for advanced VOCs abatement. Thus, the high mass resolution DI-MSs are suggested to be a supplementary measurement for fence-line monitoring. Although with a relatively short period attempt, this study has wide implications for the fence-line stationary observational modes and source apportion methods combining with traditional observations.[Abstract] [Full Text] [Related] [New Search]