These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Superior nitrogen removal and sludge reduction in a suspended sludge system with in-situ enriching anammox bacteria for real sewage treatment.
    Author: Liu J, Peng Y, Qiu S, Wu L, Xue X, Li L, Zhang L.
    Journal: Sci Total Environ; 2021 Nov 01; 793():148669. PubMed ID: 34328973.
    Abstract:
    Mainstream partial anammox provides a cost- and energy-efficient alternative for wastewater treatment. This study provided a new strategy to achieve mainstream partial anammox in a single-stage suspended sludge system. The novel method coupling external excess sludge fermentation with simultaneous partial nitritation-anammox-denitrification process (SF-SPNAD) was established for 202 days in an anaerobic-aerobic-anoxic sequencing batch reactor (AOA-SBR) with real sewage and actual sludge fermentation products. Under the condition of low DO (0.6 ± 0.2 mg/L), short oxic and long anoxic hydraulic retention time (HRToxic = 6.5 h, HRTanoxic = 8 h), the average total inorganic nitrogen (TIN) concentration in the influent and effluent during 110-day operation were 61.0 and 3.4 mg/L, respectively, and the TIN removal efficiency was 94.56%. Under the inhibitory effect of continuous sludge fermentation products addition, nitrite accumulation ratio reached 99.1% and the external sludge reduction ratio reached 38.75%. 15N-stable isotope tracing tests showed the great potential of nitrogen removal by anammox pathway in the system. High-throughput sequencing confirmed that CandidatusBrocadia (not detected to 0.50%) and CandidatusKuenenia (not detected to 0.06%) were successfully in-situ enriched. Nitrogen conversion pathways based on stoichiometry and cycle tests show that 34.69% of the TIN removal was obtained by simultaneous nitritation denitrification and anammox under oxic stage and 35.21% of the TIN removal was carried out by anammox under anoxic stage. Overall, the SF-SPNAD process provides a new possibility for coupling autotrophic and heterotrophic nitrogen removal with excess sludge utilization.
    [Abstract] [Full Text] [Related] [New Search]