These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Early warning of citric acid overdose and timely adjustment of regional citrate anticoagulation based on machine learning methods. Author: Chen H, Ma Y, Hong N, Wang H, Su L, Liu C, He J, Jiang H, Long Y, Zhu W. Journal: BMC Med Inform Decis Mak; 2021 Jul 30; 21(Suppl 2):126. PubMed ID: 34330247. Abstract: BACKGROUND: Regional citrate anticoagulation (RCA) is an important local anticoagulation method during bedside continuous renal replacement therapy. To improve patient safety and achieve computer assisted dose monitoring and control, we took intensive care units patients into cohort and aiming at developing a data-driven machine learning model to give early warning of citric acid overdose and provide adjustment suggestions on citrate pumping rate and 10% calcium gluconate input rate for RCA treatment. METHODS: Patient age, gender, pumped citric acid dose value, 5% NaHCO3 solvent, replacement fluid solvent, body temperature value, and replacement fluid PH value as clinical features, models attempted to classify patients who received regional citrate anticoagulation into correct outcome category. Four models, Adaboost, XGBoost, support vector machine (SVM) and shallow neural network, were compared on the performance of predicting outcomes. Prediction results were evaluated using accuracy, precision, recall and F1-score. RESULTS: For classifying patients at the early stages of citric acid treatment, the accuracy of neutral networks model is higher than Adaboost, XGBoost and SVM, the F1-score of shallow neutral networks (90.77%) is overall outperformed than other models (88.40%, 82.17% and 88.96% for Adaboost, XGBoost and SVM). Extended experiment and validation were further conducted using the MIMIC-III database, the F1-scores for shallow neutral networks, Adaboost, XGBoost and SVM are 80.00%, 80.46%, 80.37% and 78.90%, the AUCs are 0.8638, 0.8086, 0.8466 and 0.7919 respectively. CONCLUSION: The results of this study demonstrated the feasibility and performance of machine learning methods for monitoring and adjusting local regional citrate anticoagulation, and further provide decision-making recommendations to clinicians point-of-care.[Abstract] [Full Text] [Related] [New Search]