These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reliable SERS detection of pesticides with a large-scale self-assembled Au@4-MBA@Ag nanoparticle array.
    Author: Wang K, Li J.
    Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec 15; 263():120218. PubMed ID: 34332241.
    Abstract:
    The fabrication of sensitive and reliable interfacial plasmonic platform for measuring chemical contaminants in various phases is an exciting topic in the food industry and for environment monitoring. In this study, a high-performance surface-enhanced Raman spectroscopy (SERS) analytic platform was developed through self-assembly of the gold@4-mercaptobenzoic acid@silver nanoparticles (Au@4-MBA@Ag NPs) at the cyclohexane/water interface. By addition of the inducer ethanol, the Au@4-MBA@Ag NPs in aqueous phase was effectively migrated to the biphasic interface, forming a large-scale close-packed nanoparticle array. The average gap between adjacent nanoparticles was smaller than 3 nm, where intensive SERS "hot spots" were created for high-sensitive detection. Furthermore, using the sandwiched 4-MBA molecule as the internal standard to correct the Raman signal fluctuations, the point-to-point and batch-to-batch reproducibility of Au@4-MBA@Ag array were improved with lower relative standard deviation (RSD) values of 8.84% and 14.97%, respectively, and pesticides (thiram and thiabendazole) analysis in both aqueous and organic phases were achieved with higher accuracy (R2 of 0.986 and 0.990) as compared with those without 4-MBA correction (R2 of 0.867 and 0.974). The high-throughput fabrication of the self-assembled nanoparticle array is a promising approach for development of a sensitive and reliable SERS platform for chemical contaminants monitoring in multiphase.
    [Abstract] [Full Text] [Related] [New Search]