These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: PCR-based rapid diagnostic tools for the authentication of medicinal mistletoe species. Author: Noh P, Kim WJ, Yang S, Choi G, Moon BC. Journal: Phytomedicine; 2021 Oct; 91():153667. PubMed ID: 34332281. Abstract: BACKGROUND: Taxilli Herba (TH) and Visci Herba (VH), defined as the leaves and branches of the mistletoe species Taxillus chinensis and Viscum coloratum, respectively, are popular herbal medicines in East Asia. However, commercial TH and VH products are frequently adulterated with related inauthentic mistletoe species, posing efficacy and safety concerns. Accurate species identification of herbal medicinal products is a prerequisite for quality control, but traditional morphological identification methods are hampered by difficulties in discriminating among closely related species and in identifying the source materials in processed products. PURPOSE: This study aimed to develop sequence-characterized amplified region (SCAR) markers and a multiplex-SCAR assay for rapid and accurate identification of authentic TH and VH. METHODS: The matK region was sequenced in a total of 20 samples from five mistletoe species, namely T. chinensis and V. coloratum, and three species often found in adulterated herbal medicines, T. sutchuenensis, V. articulatum, and Macrosolen tricolor. Species-specific nucleotide polymorphisms were identified and short regions (21-22 bp) containing at least two species-specific nucleotides close to the 3' end were incorporated into SCAR primers that produced uniquely sized PCR amplicons for each species. The five SCAR primer sets were also combined into a multiplex-SCAR assay. RESULTS: The SCAR primers successfully generated amplicons of the expected size for each target species even with low-DNA templates or with templates containing DNA from multiple samples. No amplification was observed in non-target species. The SCAR markers and the multiplex-SCAR assay successfully identified commercial TH and VH products that were counterfeit or adulterated in both dried and processed products. CONCLUSION: This is the first report to illustrate discrimination of genuine medicinal mistletoe species with DNA-based marker assays, enabling rapid and accurate species identification. The SCAR assays developed in this study will facilitate the standardization of commercial mistletoe products.[Abstract] [Full Text] [Related] [New Search]