These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Magnetic skyrmion bundles and their current-driven dynamics. Author: Tang J, Wu Y, Wang W, Kong L, Lv B, Wei W, Zang J, Tian M, Du H. Journal: Nat Nanotechnol; 2021 Oct; 16(10):1086-1091. PubMed ID: 34341518. Abstract: Topological charge Q classifies non-trivial spin textures and determines many of their characteristics. Most abundant are topological textures with |Q| ≤ 1, such as (anti)skyrmions, (anti)merons or (anti)vortices. In this study we created and imaged in real space magnetic skyrmion bundles, that is, multi-Q three-dimensional skyrmionic textures. These textures consist of a circular spin spiral that ties together a discrete number of skyrmion tubes. We observed skyrmion bundles with integer Q values up to 55. We show here that electric currents drive the collective motion of these particle-like textures similar to skyrmions. Bundles with Q ≠ 0 exhibit a skyrmion Hall effect with a Hall angle of ~62°, whereas Q = 0 bundles, the so-called skyrmioniums, propagate collinearly with respect to the current flow, that is, with a skyrmion Hall angle of ~0°. The experimental observation of multi-Q spin textures adds another member to the family of magnetic topological textures, which may serve in future spintronic devices.[Abstract] [Full Text] [Related] [New Search]