These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identifying high performance gold nanoshells for singlet oxygen generation enhancement. Author: Farooq S, de Araujo RE. Journal: Photodiagnosis Photodyn Ther; 2021 Sep; 35():102466. PubMed ID: 34343668. Abstract: Metallic nanostructures can improve the production of singlet oxygen (1O2) of a photosensitizer during photodynamic therapy (PDT) . Engineering a high performance nanoparticle is mandatory for an appropriate use of plasmonic nanostructures in PDT. Metal enhanced singlet oxygen generation requires the use of nanoparticles with high scattering efficiency, capable of inducing a significant electric field enhancement and with plasmon peak overlapping the photosensitizer absorption spectrum. Herein, we report the optimization of nanoshells structure (silica core radius and gold shell thickness) to increase the singlet oxygen production by Methylene Blue photosensitizer. A 3D Full-wave field analysis was used to evaluate the plasmonic spectrum, scattering efficiency and localized field intensity of Au nanoshells as a function of their dimensions. The 40/20 core radius/shell thickness optimized gold nanoshell showed 75% scattering efficiency and field enhancement up to 35 times. Metal-enhanced singlet oxygen generation was observed and quantified for Methylene Blue water solution with gold nanoshell particles. Moreover, the influence of the irradiation time and the metallic nanostructures concentration on metal enhanced singlet oxygen generation were also appraised. The experimental results showed that the use of gold nanoshell improved 320% the 1O2 production in a MB solution. The approach used to select a high performance metallic nanoparticle provides insights on engineering plasmonic structures for metal enhanced singlet oxygen generation for PDT.[Abstract] [Full Text] [Related] [New Search]