These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Deep learning multimodal fNIRS and EEG signals for bimanual grip force decoding.
    Author: Ortega P, Faisal AA.
    Journal: J Neural Eng; 2021 Aug 31; 18(4):. PubMed ID: 34350839.
    Abstract:
    Objective.Non-invasive brain-machine interfaces (BMIs) offer an alternative, safe and accessible way to interact with the environment. To enable meaningful and stable physical interactions, BMIs need to decode forces. Although previously addressed in the unimanual case, controlling forces from both hands would enable BMI-users to perform a greater range of interactions. We here investigate the decoding of hand-specific forces.Approach.We maximise cortical information by using electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) and developing a deep-learning architecture with attention and residual layers (cnnatt) to improve their fusion. Our task required participants to generate hand-specific force profiles on which we trained and tested our deep-learning and linear decoders.Main results.The use of EEG and fNIRS improved the decoding of bimanual force and the deep-learning models outperformed the linear model. In both cases, the greatest gain in performance was due to the detection of force generation. In particular, the detection of forces was hand-specific and better for the right dominant hand andcnnattwas better at fusing EEG and fNIRS. Consequently, the study ofcnnattrevealed that forces from each hand were differently encoded at the cortical level.Cnnattalso revealed traces of the cortical activity being modulated by the level of force which was not previously found using linear models.Significance.Our results can be applied to avoid hand-cross talk during hand force decoding to improve the robustness of BMI robotic devices. In particular, we improve the fusion of EEG and fNIRS signals and offer hand-specific interpretability of the encoded forces which are valuable during motor rehabilitation assessment.
    [Abstract] [Full Text] [Related] [New Search]