These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mesenchymal stem cell-derived exosomal miR-21a-5p promotes M2 macrophage polarization and reduces macrophage infiltration to attenuate atherosclerosis.
    Author: Ma J, Chen L, Zhu X, Li Q, Hu L, Li H.
    Journal: Acta Biochim Biophys Sin (Shanghai); 2021 Aug 31; 53(9):1227-1236. PubMed ID: 34350954.
    Abstract:
    Atherosclerosis (AS) is the main pathological basis for ischemic cardiovascular and cerebrovascular diseases. Mesenchymal stem cell (MSC)-derived exosomes have the potential to alleviate AS, while the underlying mechanism remains unclear. Here, we aimed to investigate the mechanism of MSC-derived exosomes in AS. The AS mouse model was prepared by feeding ApoE-/- mice with high-fat diet. AS mice were administered with MSC-derived exosomes, and the atherosclerotic plaque area was analyzed by Oil Red O staining. Mouse RAW264.7 macrophages were incubated with MSC-derived exosomes. The macrophage infiltration, macrophage proportion, and cell migration were estimated by immunohistochemistry, flow cytometry, or Transwell assay. The relationship between miR-21a-5p and kruppel-like factor 6 (KLF6) or extracellular signal-regulated protein kinases 2 (ERK2) was verified by luciferase reporter assay. We found that MSC-derived exosomes promoted M2 polarization of macrophages and reduced plaque area and macrophage infiltration in AS mice. miR-21a-5p overexpression caused an increase of M2 macrophages in RAW264.7 cells and led to a decrease in migration of RAW264.7 cells. Moreover, both KLF6 and ERK2 are the targets of miR-21a-5p. MSC-derived exosomes containing miR-21a-5p promoted M2 polarization of RAW264.7 cells by suppressing KLF6 expression. MSC-derived exosomes containing miR-21a-5p inhibited migration of RAW264.7 cells through inhibiting the ERK1/2 signaling pathway. In conclusion, MSC-derived exosomes containing miR-21a-5p promote macrophage polarization and reduce macrophage infiltration by targeting KLF6 and ERK1/2 signaling pathways, thereby attenuating the development of AS. Thus, MSC-derived exosomes may be a promising treatment for AS.
    [Abstract] [Full Text] [Related] [New Search]