These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Suppression of Mitochondria-Related Bioenergetics Collapse and Redox Impairment by Tanshinone I, a Diterpenoid Found in Salvia miltiorrhiza Bunge (Danshen), in the Human Dopaminergic SH-SY5Y Cell Line Exposed to Chlorpyrifos. Author: Brasil FB, de Almeida FJS, Luckachaki MD, Dall'Oglio EL, de Oliveira MR. Journal: Neurotox Res; 2021 Oct; 39(5):1495-1510. PubMed ID: 34351569. Abstract: Tanshinone I (T-I, C18H12O3) is a diterpene found in Salvia miltiorrhiza Bunge (Danshen) and promotes cytoprotection in several experimental models. Chlorpyrifos (CPF) is an agrochemical that causes bioenergetics failure, redox impairment, inflammation, and cell death in animal tissues. Here, we investigated whether T-I would be able to prevent the consequences resulting from the exposure of the human dopaminergic SH-SY5Y cells to CPF. We found that a pretreatment with T-I at 2.5 µM for 2 h suppressed lipid peroxidation and protein carbonylation and nitration on the membranes of mitochondria extracted from the CPF-treated cells. Also, T-I reduced the production of radical superoxide (O2-•) by the mitochondria of the CPF-challenged cells. The production of nitric oxide (NO•) and hydrogen peroxide (H2O2) was also decreased by T-I in the cells exposed to CPF. The CPF-induced decrease in the activity of the complexes I-III, II-III, and V was abolished by a pretreatment with T-I. Loss of mitochondrial membrane potential (ΔΨm) and reduction in the production of adenosine triphosphate (ATP) were also prevented by T-I in the CPF-treated cells. T-I also induced anti-inflammatory effects in the CPF-treated cells by decreasing the levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) and the activity of the nuclear factor-κB (NF-κB). Inhibition of heme oxygenase-1 (HO-1) or silencing of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) blocked the T-I-promoted mitochondrial protection and anti-inflammatory action. Overall, T-I depended on the Nrf2/HO-1 axis to prevent the deleterious effects caused by CPF in this experimental model.[Abstract] [Full Text] [Related] [New Search]