These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pyrene contaminated soil remediation using microwave/magnetite activated persulfate oxidation. Author: Wu D, Kan H, Zhang Y, Wang T, Qu G, Zhang P, Jia H, Sun H. Journal: Chemosphere; 2022 Jan; 286(Pt 2):131787. PubMed ID: 34365168. Abstract: Polycyclic aromatic hydrocarbons (PAHs) are important mutagen prevalent in the contaminated sites, bringing potential risks to human health. Iron oxides are important natural components in soils. Pyrene removal in soil using persulfate (PS) oxidation activated by microwave (MW) and magnetite (Fe3O4) was investigated. Fe3O4 significantly promoted pyrene removal in the soil; 91.7 % of pyrene was degraded within 45 min treatment. Pyrene removal rate in the Fe3O4/MW/PS system was 5.18 and 3.00 times higher than that in the Fe3O4/PS and MW/PS systems. Increasing in Fe3O4 dosage, PS concentration, MW temperature, and soil moisture content in the selected range were conducive for pyrene degradation. SO4•-, •OH, O2•-, and 1O2 were responsible for pyrene degradation, and the conversion of Fe (Ⅱ) in the Fe3O4 to Fe (Ⅲ) contributed to the formation of O2•- and 1O2. Characteristic bands of pyrene were more obviously destroyed by the Fe3O4/MW/PS oxidation, in comparison with MW/PS oxidation. Ring hydroxylation and ring-opening reactions were the main degradation pathways of pyrene. The toxicities of the formed byproducts were significantly reduced after treatment. This study provided a promising option for pyrene contaminated soil remediation.[Abstract] [Full Text] [Related] [New Search]