These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Plant uptake of perfluoroalkyl substances in freshwater environments (Dongzhulong and Xiaoqing Rivers, China). Author: Colomer-Vidal P, Jiang L, Mei W, Luo C, Lacorte S, Rigol A, Zhang G. Journal: J Hazard Mater; 2022 Jan 05; 421():126768. PubMed ID: 34365232. Abstract: This study provides new knowledge on the mobility, behavior, and partitioning of 17 perfluoroalkyl substances (PFASs) in the water-sediment-plant system along the Dongzhulong and Xiaoqing Rivers. The fate of PFASs in these rivers is also discussed. The study area is affected by the industrial production of perfluorooctanoic acid (PFOA). The ∑PFASs in water and sediments close to the industrial discharge were 84,000 ± 2000 ng/L and 2300 ± 200 ng/g dw, respectively, with the concentrations decreasing along the river due to dilution. PFOA was the dominant compound (74-97% of the ∑PFASs), although other PFASs were identified close to urban areas. Principal component analysis and solid-liquid distribution coefficients revealed that long-chain PFASs accumulated in the sediment whereas short-chain PFASs remained in the water all along the river. PFASs were taken up by plants and remobilized to different plant compartments according to shoot concentration factors (SCFs), root concentration factors (RCF), and transfer factors (TFs). Among the four plant species studied, floating plants absorbed high levels of PFASs, while rooted species translocated short-chain PFASs from the roots to the shoots. Therefore, floating species, due to their high uptake capacity and large proliferation rate, could eventually be used for phytoremediation.[Abstract] [Full Text] [Related] [New Search]