These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparative transcriptome analysis and identification of candidate adaptive evolution genes of Miscanthus lutarioriparius and Miscanthus sacchariflorus.
    Author: Wang J, Sheng J, Zhu J, Hu Z, Diao Y.
    Journal: Physiol Mol Biol Plants; 2021 Jul; 27(7):1499-1512. PubMed ID: 34366592.
    Abstract:
    UNLABELLED: Miscanthus species are perennial C4 grasses that are considered promising energy crops because of their high biomass yields, excellent adaptability and low management costs. Miscanthus lutarioriparius and Miscanthus sacchariflorus are closely related subspecies that are distributed in different habitats. However, there are only a few reports on the mechanisms by which Miscanthus adapts to different environments. Here, comparative transcriptomic and morphological analyses were used to study the evolutionary adaptation of M. lutarioriparius and M. sacchariflorus to different habitats. In total, among 7586 identified orthologs, 2060 orthologs involved in phenylpropanoid biosynthesis and plant hormones were differentially expressed between the two species. Through an analysis of the Ka/Ks ratios of the orthologs, we estimated that the divergence time between the two species was approximately 4.37 Mya. In addition, 37 candidate positively selected orthologs (PSGs) that played important roles in the adaptation of these species to different habitats were identified. Then, the expression levels of 20 PSGs in response to flooding and drought stress were analyzed, and the analysis revealed significant changes in their expression levels. These results facilitate our understanding of the evolutionary adaptation to habitats and the speciation of M. lutarioriparius and M. sacchariflorus. We hypothesise that lignin synthesis genes are the main cause of the morphological differences between the two species. In summary, the plant nonspecific phospholipase C gene family and the receptor-like protein kinase gene family played important roles in the evolution of these two species. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01030-1.
    [Abstract] [Full Text] [Related] [New Search]