These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanistic analysis of cadmium toxicity in Saccharomyces cerevisiae. Author: Zhao Y, Su R, Li S, Mao Y. Journal: FEMS Microbiol Lett; 2021 Aug 12; 368(15):. PubMed ID: 34370016. Abstract: As a potentially toxic heavy metal, Cadmium (Cd) can cause endoplasmic reticulum and oxidative stress, and thus lead to cell death. To explore the mechanisms of Cd toxicity, we investigated the UPRE-lacZ expression, the intracellular reactive oxygen species (ROS) and cell death in the 151 Cd-sensitive mutants of Saccharomyces cerevisiae in response to Cd stress. We identified 101 genes regulating UPRE-lacZ expression were involved in preventing ROS production and/or cell death from increasing to high levels, while mutants for 72 genes caused both elevated ROS production and cell death, indicating the Cd-induced ROS production and cell death are mediated by UPR. Genes involved in cell wall integrity (CWI) pathway, vacuolar protein sorting (VPS) and vacuolar transport, calcium/calcineurin pathway and PHO pathways were all required for the Cd-induced UPR, intracellular ROS and cell death. To conclude, this study highlights the importance of Cd-induced UPR, intracellular ROS levels and cell death that may play crucial roles in Cd-induced toxicity.[Abstract] [Full Text] [Related] [New Search]