These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of an ETV6-NTRK3 rearrangement with unusual, but highly significant FISH signal pattern in a secretory carcinoma of the salivary gland: a case report.
    Author: Wagner F, Greim R, Krebs K, Luebben F, Dimmler A.
    Journal: Diagn Pathol; 2021 Aug 09; 16(1):73. PubMed ID: 34372873.
    Abstract:
    BACKGROUND: Fusions of neurotrophic tropomyosin receptor kinase genes NTRK1, NTRK2 and NTRK3 with various partner genes occur in both common and rare tumours and are of paramount predictive value due to the availability of very effective pan-Trk inhibitors like Larotrectinib and Entrectinib. Detection of NTRK fusions is mainly performed by fluorescence in situ hybridization (FISH) and next generation sequencing (NGS). The case described here showed a very unusual, but highly significant FISH signal pattern with an NTRK3 break apart probe, indicative of a functional NTRK3 rearrangement. CASE PRESENTATION: We describe here the case of a male patient who was originally diagnosed with an adenocarcinoma of the parotid gland without evidence of metastases. After the development of multiple lung metastases, an extensive immunohistochemical and molecular examination of archived tumour tissue including analysis of NTRK was performed. NTRK expression was detected by immunohistochemistry (IHC) and then comprehensively analysed further by FISH, quantitative reverse transcription PCR (RT-qPCR), and NGS. NTRK3 break apart FISH showed multiple and very faint single 3' signals in addition to fusion signals. Quantitative reverse transcription PCR and NGS confirmed an ETV6:exon5-NTRK3:exon15 fusion. Diagnosis was therefore revised to metastatic secretory carcinoma of the salivary gland, and the patient subsequently treated with Larotrectinib, resulting in persisting partial remission. CONCLUSIONS: Our findings underline the importance to be aware of non-canonical signal patterns during FISH analysis for detection of NTRK rearrangements. Very faint single 3' signals can indicate a functional NTRK rearrangement and therefore be of high predictive value.
    [Abstract] [Full Text] [Related] [New Search]