These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genome-wide identification and expression analysis of Polyamine Uptake Transporter gene family in sweet orange (Citrus sinensis). Author: Alhag A, Song J, Dahro B, Wu H, Khan M, Salih H, Liu JH. Journal: Plant Biol (Stuttg); 2021 Nov; 23(6):1157-1166. PubMed ID: 34374185. Abstract: Polyamine uptake transporter (PUT) plays important roles in polyamine homeostasis, but knowledge regarding PUT family genes in sweet orange (Citrus sinensis) remains elusive. Herein, our study aimed to perform a genome-wide identification of the PUT gene family in C. sinensis. A total of eight putative PUT genes (CsPUT1-CsPUT8) were identified in the sweet orange genome and distributed on three chromosomes. The CsPUT genes were divided into two major groups according to the phylogenetic tree analysis, with high similarities in protein domains and gene structure organization. The CsPUT genes were differentially expressed in different tissues, with the highest transcript levels being in the flowers and roots. Interestingly, the CsPUT genes were significantly induced by polyamines, putrescine, spermidine and spermine, indicating that CsPUT were possibly associated with intracellular polyamine transport and uptake. In addition, CsPUT showed differential expression in callus treated with ABA, cold, salt or osmotic shock. CsPUT4 was selected as a candidate for functional analysis of PUT. Overexpression of CsPUT4 elevated endogenous polyamine content and led to enhanced cold tolerance in transgenic callus cultures. Overall, these data provide valuable information for better understanding the potential biological functions of PUT genes in future.[Abstract] [Full Text] [Related] [New Search]