These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effect of UV exposure on conventional and degradable microplastics adsorption for Pb (II) in sediment.
    Author: Guan Y, Gong J, Song B, Li J, Fang S, Tang S, Cao W, Li Y, Chen Z, Ye J, Cai Z.
    Journal: Chemosphere; 2022 Jan; 286(Pt 2):131777. PubMed ID: 34375835.
    Abstract:
    Plastic discharged into the environment would break down into microplastics (MPs). However, the possible impact of MPs on heavy metals in the aquatic sediment remains unknown. In order to evaluate the potential role of MPs as carriers of coexisting pollutants, the adsorption capacity of lead ions from sediment onto aged degradable and conventional MPs were investigated as a function of lead ions concentration, contact time, temperature, MPs dosage, aging time, and fulvic acid concentration. MPs were exposed to UV to obtain aged polyethylene (A-PE) and aged polylactic acid (A-PLA). The aging treatment increased the oxygen content, specific surface area and hydrophilicity of MPs. The adsorption capacity of A-PE for Pb(II) in sediment increased from 10.1525 to 10.4642 mg g-1 with the increasing aging time. However, the adsorption capacity of A-PLA for Pb(II) in sediment decreased from 9.3199 to 8.7231 mg g-1 with the increasing aging time. The adsorption capacity of MPs in sediment for Pb(II) was in the following order: A-PE > PLA > PE > A-PLA. Fulvic acid could promote the adsorption of Pb(II) by MPs in sediment. These results indicated that the aging process of the plastics in the environment would affect its role as a carrier of coexisting pollutants.
    [Abstract] [Full Text] [Related] [New Search]