These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Photosynthesis, lipid peroxidation, and antioxidative responses of Helianthus annuus L. against chromium (VI) accumulation.
    Author: Kumar D, Seth CS.
    Journal: Int J Phytoremediation; 2021 Aug 11; ():1-10. PubMed ID: 34379027.
    Abstract:
    The present study was performed to address how Cr(VI) posed its toxicities on photosynthesis, lipid peroxidation, and its retaliation by antioxidative system of Helianthus annuus L. during Cr(VI) accumulation. For this, a pot experiment was performed wherein three different concentrations viz, 15, 30, and 60 mg Cr(VI) kg-1 soil were applied to Helianthus annuus L. at the time of seeds sowing. The results revealed that Cr(VI) accumulation was two to three folds higher in roots than in shoots which suggests that root is the major site for Cr(VI) accumulation. It was observed that with increasing doses of Cr(VI), growth indices hampered significantly, along with closure of stomata and damaged guard and epidermal cells. Photosynthetic pigments (chlorophyll a, chlorophyll b, carotenoids), leaf gaseous exchange parameters (A, E, GH2O), and PSII efficiency (Fv/Fm) worsened under Cr(VI) toxicity in dose dependent manner. Cr(VI) accumulation intensified the lipid peroxidation, too by triggering the MDA and H2O2 production, however, the plant responded well against the lipid peroxidation by enhancing the coordinated action of enzymatic (SOD, APX, GR) and non-enzymatic (GSH, AsA) antioxidants. In a nutshell, Helianthus annuus L. could be used as a potential Cr(VI) accumulator because of its good tolerance strategies against Cr(VI) toxicities.NOVELTY STATEMENT The results revealed that Cr(VI) accumulation was two to three folds higher in roots than in shoots which suggests that root is the major site for Cr(VI) accumulation. Photosynthetic pigments, leaf gaseous exchange parameters, and Fv/Fm worsened under Cr(VI) toxicity. Cr(VI) accumulation intensified lipid peroxidation by triggering MDA and H2O2 production, however, the plant responded well against the lipid peroxidation by enhancing the coordinated action of enzymatic and non-enzymatic antioxidants. In a nutshell, Helianthus annuus L. could be used as a potential Cr(VI) accumulator because of its good tolerance strategies against Cr(VI) toxicities.
    [Abstract] [Full Text] [Related] [New Search]