These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Replacement of Nitrite in Meat Products by Natural Bioactive Compounds Results in Reduced Exposure to N-Nitroso Compounds: The PHYTOME Project.
    Author: van Breda SG, Mathijs K, Pieters HJ, Sági-Kiss V, Kuhnle GG, Georgiadis P, Saccani G, Parolari G, Virgili R, Sinha R, Hemke G, Hung Y, Verbeke W, Masclee AA, Vleugels-Simon CB, van Bodegraven AA, de Kok TM, PHYTOME consortiumDepartment of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, the Netherlands..
    Journal: Mol Nutr Food Res; 2021 Oct; 65(20):e2001214. PubMed ID: 34382747.
    Abstract:
    SCOPE: It has been proposed that endogenously form N-nitroso compounds (NOCs) are partly responsible for the link between red meat consumption and colorectal cancer (CRC) risk. As nitrite has been indicated as critical factor in the formation of NOCs, the impact of replacing the additive sodium nitrite (E250) by botanical extracts in the PHYTOME project is evaluated. METHOD AND RESULTS: A human dietary intervention study is conducted in which healthy subjects consume 300 g of meat for 2 weeks, in subsequent order: conventional processed red meat, white meat, and processed red meat with standard or reduced levels of nitrite and added phytochemicals. Consumption of red meat products enriched with phytochemicals leads to a significant reduction in the faecal excretion of NOCs, as compared to traditionally processed red meat products. Gene expression changes identify cell proliferation as main affects molecular mechanism. High nitrate levels in drinking water in combination with processed red meat intake further stimulates NOC formation, an effect that could be mitigated by replacement of E250 by natural plant extracts. CONCLUSION: These findings suggest that addition of natural extracts to conventionally processed red meat products may help to reduce CRC risk, which is mechanistically support by gene expression analyses.
    [Abstract] [Full Text] [Related] [New Search]