These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A channel independent generalized seizure detection method for pediatric epileptic seizures. Author: Chakrabarti S, Swetapadma A, Pattnaik PK. Journal: Comput Methods Programs Biomed; 2021 Sep; 209():106335. PubMed ID: 34390934. Abstract: BACKGROUND AND OBJECTIVE: Epilepsy the disorder of the central nervous system has its worldwide presence in roughly 50 million people as estimated by the World Health Organization. Electroencephalogram (EEG) is one of the most common and non-invasive ways of analyzing and studying the subtle changes in neuronal activity of the brain during an epileptic seizure attack. These changes can be analyzed for developing an automated system that would assert the chances of an impending seizure. As changeable nature of seizure affects the patients from having a normal life, hence progress in developing new methods will improve the quality of life and also provide assistance in the medical sector. Objective of the proposed method is to avoid EEG channel selection and use all input EEG channel features to design a generalized epileptic seizure detection framework. METHOD: In this work, a long short-term memory network has been proposed that is not complex and has the capability of effectively detecting epileptic seizures from both non-invasive and invasive electroencephalogram recordings. The proposed framework is simple and effective and designed in such capacity that raw electroencephalogram signals can be used to detect seizures. Also, a generalized approach has been followed that is channel independent such that EEG signals belonging to any hemisphere of the brain can be detected effectively by the proposed architecture. RESULTS: The automated seizure detection system achieved high seizure detection sensitivity of 99.9%, and a low false-positive rate of 0.003 per hour for the Children's Hospital Boston-Massachusetts Institute of Technology dataset. While for the Sleep-Wake-Epilepsy-Center of the University Department of Neurology at the Inselspital Bern dataset, the sensitivity is 99.4% and false-positive rate of 0.006 per hour. Convergence analysis of the proposed model provides a significant amount of reliability and correctness in the efficient detection of epileptic seizures. CONCLUSION: Assessment of the proposed framework on non-invasive as well as invasive EEG signals showed that the framework worked well for different type of EEG recordings as different metrics gave satisfactory results. As the framework is simple and did not require any additional parameter optimization techniques, it reduced the processing overheads without affecting the accuracy. Hence, it can be used as an efficient method for monitoring epileptic seizures.[Abstract] [Full Text] [Related] [New Search]