These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Carbon, hydrogen and nitrogen stable isotope fractionation allow characterizing the reaction mechanisms of 1H-benzotriazole aqueous phototransformation.
    Author: Wu L, Suchana S, Flick R, Kümmel S, Richnow H, Passeport E.
    Journal: Water Res; 2021 Sep 15; 203():117519. PubMed ID: 34391022.
    Abstract:
    1H-benzotriazole is part of a larger family of benzotriazoles, which are widely used as lubricants, polymer stabilizers, corrosion inhibitors, and anti-icing fluid components. It is frequently detected in urban runoff, wastewater, and receiving aquatic environments. 1H-benzotriazole is typically resistant to biodegradation and hydrolysis, but can be transformed via direct photolysis and photoinduced mechanisms. In this study, the phototransformation mechanisms of 1H-benzotriazole were characterized using multi-element compound-specific isotope analysis (CSIA). The kinetics, transformation products, and isotope fractionation results altogether revealed that 1H-benzotriazole direct photolysis and indirect photolysis induced by OH radicals involved two alternative pathways. In indirect photolysis, aromatic hydroxylation dominated and was associated with small carbon (εC = -0.65 ± 0.03‰), moderate hydrogen (εH = -21.6‰), and negligible nitrogen isotope enrichment factors and led to hydroxylated forms of benzotriazole. In direct photolysis of 1H-benzotriazole, significant nitrogen (εN = -8.4 ± 0.4 to -4.2 ± 0.3‰) and carbon (εC = -4.3 ± 0.2 to -1.64 ± 0.04‰) isotope enrichment factors indicated an initial N-N bond cleavage followed by nitrogen elimination with a C-N bond cleavage. The results of this study highlight the potential for multi-element CSIA application to track 1H-benzotriazole degradation in aquatic environments.
    [Abstract] [Full Text] [Related] [New Search]