These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: DAF-16 acts as the "hub" of astaxanthin's anti-aging mechanism to improve aging-related physiological functions in Caenorhabditis elegans. Author: Liu X, Liu H, Chen Z, Xiao J, Cao Y. Journal: Food Funct; 2021 Oct 04; 12(19):9098-9110. PubMed ID: 34397058. Abstract: Astaxanthin (AX) is a xanthophyll carotenoid that can effectively inhibit the production of peroxides and thereby protect the body from oxidative damage. In recent years, AX had been shown to have anti-aging properties, both in vivo and in vitro. However, the underlying mechanisms by which AX regulates senescence related proteins and signaling pathways remain unclear. Therefore, we used Caenorhabditis elegans (C. elegans) model binding proteomics to reveal AX anti-aging activity and its molecular mechanism. Our results suggest that AX promotes the health and lifespan of C. elegans by improving mobility, reducing the accumulation of age pigments, and increasing resistance to heat stress. In terms of the underlying mechanism, AX helps prolong the life of worms by regulating AGE-1 in the insulin signaling pathway, promoting the transport of DAF-16 into the nucleus and then up-regulating the expression level of DAF-16's downstream proteins (such as superoxide dismutase [Mn] 2 (SOD-3), heat shock proteins (HSPs), glutathione s-transferase (GST-4), etc.). Furthermore, AX may be a relevant response target for activation of dietary restriction pathways in vivo as a dietary restriction mimic. Meanwhile, proteomics data confirmed that there were 15 proteins enriched in the longevity regulation pathway. AX mainly regulates oxidative stress and the aging process by modulating the insulin signaling pathway around DAF-16 as the "hub". In addition to the insulin signaling pathway, other pathways including dietary restriction, AMP-activated protein kinase (AMPK), and mammal target of rapamycin (mTOR) are also dependent on DAF-16. These findings expand and deepen our knowledge of the underlying mechanism by which AX extends the lifespan of C. elegans.[Abstract] [Full Text] [Related] [New Search]