These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel peptide-based fluorescent probe with a large stokes shift for rapid and sequential detection of Cu2+ and CN- in aqueous systems and live cells. Author: Guo Z, Wang Q, Zhou D, An Y, Wang P, Liao F. Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan 05; 264():120257. PubMed ID: 34411770. Abstract: A novel fluorescent probe (DSD) was reasonably designed and synthesized with dansyl-labeled dipeptide (Dan-Ser-Asp-NH2). DSD featured remarkably large Stokes shift (230 nm) and perfect water solubility, and exhibited high selectivity and rapid recognition toward Cu2+via fluorescence quenching. The detection limit of DSD for Cu2+ was 2.4 nM, indicated that DSD has excellent sensitivity. In addition, the stoichiometry between DSD and Cu2+ were detected as 1:1 by fluorescence titration, Job's plot and ESI-HRMS data. As designed, DSD-Cu2+ system was able to sequentially detect CN- according to the displacement approach with fluorescence "off-on" response, and the detection limit for CN- was calculated to be 41.9 nM. Specifically, the response time of DSD with Cu2+ and CN- was less than 40 s, which rendered it suitable for real time detection in actual water samples. In addition, with the alternate addition of Cu2+ and CN-, the reversible cycles could be repeated for at least 10 times, indicated that DSD was a promising reversibility probe. DSD showed low toxicity and good biocompatibility, and was successfully applied to detect Cu2+ and CN- in living cells.[Abstract] [Full Text] [Related] [New Search]