These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Strong adsorption properties and mechanism of action with regard to tetracycline adsorption of double-network polyvinyl alcohol-copper alginate gel beads.
    Author: Liao Q, Rong H, Zhao M, Luo H, Chu Z, Wang R.
    Journal: J Hazard Mater; 2022 Jan 15; 422():126863. PubMed ID: 34416684.
    Abstract:
    In the present study, glutaraldehyde was used as a hydrophobic modifier to crosslink polyvinyl alcohol (PVA), and copper ion was immobilized by sodium alginate (SA). Polyvinyl alcohol-copper alginate (PVA-CA) gel beads were prepared by a one-step process, and were used to adsorb and remove tetracycline (TC) from an aqueous solution. The beads were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) measurement, X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). The adsorption experiment showed that the optimal pH value of the beads was 5, and that their adsorption met pseudo-second-order kinetic and Langmuir isothermal models. The adsorption thermodynamics experiment showed that the adsorption process was spontaneous and endothermic. Under optimal adsorption conditions, the maximum adsorption capacity for TC of the beads was 231.431 mg/g, which was much higher than that of a single copper alginate matrix. After 5 adsorption-desorption cycles, the adsorption capacity remained high. FTIR and X-ray photoelectron spectroscopy (XPS) revealed that the cation bonding bridge reaction was the main driving force behind the adsorption mechanism. Compared with other reported adsorption materials, the PVA-CA gel beads have high adsorption capacity, a simple preparation process, and excellent recovery performance.
    [Abstract] [Full Text] [Related] [New Search]