These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The synergic interaction between environmental factors (pH and NaCl) and the physiological state (vegetative cells and spores) provides new possibilities for optimizing processes to manage risk of C. sporogenes spoilage.
    Author: Boix E, Couvert O, André S, Coroller L.
    Journal: Food Microbiol; 2021 Dec; 100():103832. PubMed ID: 34416948.
    Abstract:
    Clostridium sporogenes has been widely used as a surrogate for proteolytic C. botulinum for validating thermal processes in low-acid cans. To limit the intensity of heat treatments, industrials must use other ways of control as an association of acidic and saline environment after a low heat treatment. The probability of growth of pH (7-4.4), sodium chloride concentration (0-11%) and heat treatment (80°C-10 min; 100°C-1.5 min and 5.2 min) were studied on C. sporogenes PA 3679 spores and vegetative cells. Vegetative cells or heat-treated spores were inoculated in PYGm broth at 30 °C for 48 days in anaerobic conditions. Vegetative cells growth (pH 4.6-pH 4.5; 7%-8% NaCl) range is larger than the spore one (pH 5.2-pH 5.0; 6%-7% NaCl). Spores germination and outgrowth rage is decreased if the spores are heat-treated at 100 °C for 1.5 min (pH 5.5-5.3; 4%-5% NaCl) and 5.2 min (pH 5.7-5.3; 4%-5% NaCl). The C. sporogenes PA 3679 spores germination and outgrowth is impacted by their physiological state. The synergic interaction between environmental factors (pH and NaCl) and the physiological state (vegetative cells and spores) opening new possibilities for optimizing food formulation processes to manage the risks of C. sporogenes spoilage.
    [Abstract] [Full Text] [Related] [New Search]