These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pharmacokinetics, plasma protein binding, and metabolism of a potential natural chemosensitizer from Marsdenia tenacissima in rats. Author: Xie B, Jiang SQ, Shen XL, Wu HQ, Hu YJ. Journal: J Ethnopharmacol; 2021 Dec 05; 281():114544. PubMed ID: 34419608. Abstract: ETHNOPHARMACOLOGICAL RELEVANCE: Marsdenia tenacissima (Roxb.) Wight et Arn is a medicinal plant mainly distributed in southwest China. It is used in folk medicine for the treatment of tumors and is synergistic with chemotherapies. In our previous study, 11α-O-2-methybutyryl-12β-O-tigloyl-tenacigenin B (MT2), a main steroid aglycone isolated from the total aglycones of M. tenacissima, significantly enhanced the in vivo antitumor effect of paclitaxel in mice bearing human tumor xenografts, showing its potential as a chemosensitizer. However, the pharmacokinetic characteristics, plasma protein binding rate, and metabolic profile of MT2 remain unclear. AIM OF THE STUDY: To elucidate the pharmacokinetic characteristics, plasma protein binding rate, and metabolic profile of MT2 in rats. MATERIALS AND METHODS: MT2 in rat plasma and phosphate-buffered saline was quantified using ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method, while the MT2 metabolites in rat liver microsomes were analyzed using UPLC-triple time-of-flight MS/MS. RESULTS: For intravenously administered MT2, the maximum plasma concentration and the area under the plasma concentration-time curve indicated dose dependency, while the elimination half-life time, the mean residence time, apparent volume of distribution and total apparent clearance values remained relatively unchanged in both the 5 mg/kg and 10 mg/kg groups. For orally administered MT2, the bioavailability was 1.08-1.11%. In rat plasma, MT2 exhibited a protein binding rate of 93.84-94.96%. In rat liver microsomes, MT2 was metabolized by oxidation alone or in combination with demethylation, and five MT2 metabolites were identified. CONCLUSION: MT2 has low oral bioavailability and a high plasma protein binding rate in rats. After administration, MT2 is transformed into oxidative metabolites in the liver. To achieve a high blood concentration of MT2, it should be administered intravenously. These findings would serve as a reference for further MT2-based pharmacological study and drug development.[Abstract] [Full Text] [Related] [New Search]