These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The Ryanodine receptor stabilizer S107 fails to support motor neuronal neuritogenesis in vitro. Author: Keilhoff G, Pinkernelle J, Fansa H. Journal: Tissue Cell; 2021 Dec; 73():101625. PubMed ID: 34419737. Abstract: Calcium homeostasis is essential for neuronal cell survival/differentiation. Imbalance of the Ca2+ homeostasis due to excessive Ca2+ overload is essential for spinal cord injury (SCI). The overload resulted from Ca2+ flux across the plasma membrane and from internal Ca2+ store release (mitochondria, endoplasmic reticulum, ER). Inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) are involved in releasing Ca2+ from ER contributing to axonal degeneration following SCI. In turn, block of both receptors is axoprotective. The calstabin RyR subunit, stabilizing the channel in a state of reduced activity, prevents pathological Ca2+ release too. We investigated whether S107, a RyR-stabilizing compound (Rycal), is beneficial for survival and neuritogenesis of spinal cord motor neurons in vitro. We used a spinal cord slice model and the motor neuron-like NSC-34 cell line. Effects of S107 were tested by propidium iodide/fluorescein diacetate vital staining, mitotic index determination via BrdU-incorporation, and neurite sprouting parameters. Results showed that S107 (i) had no effect on gliosis resulting from slices preparation; (ii) had no effect on motor neuronal survival and proliferation; and (iii) impaired neurite sprouting, no matter whether it was a differentiation (NSC-34 cells) or regeneration (spinal cord slices) process. The results underline the need for a flexible Ca2+homeostasis provided by the ER for re-initiation of neuritogenesis.[Abstract] [Full Text] [Related] [New Search]