These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Geochemical stability of zero-valent iron modified raw wheat straw innovatively applicated to in situ permeable reactive barrier: N2 selectivity and long-term denitrification. Author: Guo C, Qi L, Bai Y, Yin L, Li L, Zhang W. Journal: Ecotoxicol Environ Saf; 2021 Aug 20; 224():112649. PubMed ID: 34425538. Abstract: The zero-valent iron (ZVI) modified wheat straw materials are widely used for treating groundwater by permeable reactive barrier (PRB). We report the performance of a field-scale PRB filled with ZVI modified wheat straw materials for nitrate (NO3-)-contaminated groundwater. In lab-scale PRB filled with ZVI modified wheat straw material, NO3- concentration entering the PRB was varied (27.80-59.86 mg L-1) according to the in situ NO3- contamination. A stable NO3- removal rate of 90% was achieved at a controlled hydraulic retention time of 22 days, together with a proportion of denitrifying bacteria up to 34.37%. The field-scale PRB filled with ZVI modified wheat straw material was successful at removing NO3- from groundwater (removal percentages ≥60%) at a groundwater flow rate of 0.01 m3 d-1. Monitoring of groundwater within this PRB provided evidences that the nitrogen gas (N2) selectivity increased with lower ammonia (NH4+) generated from ZVI reduction of NO3-, and few emission of NO2- present due to denitrification capacity in this PRB. The results are finally compared with the few others reported existing PRBs for nitrate-contaminated groundwater worldwide, and demonstrated that the ZVI modified wheat straw material would be an effective fillings for field PRB to remediate groundwater.[Abstract] [Full Text] [Related] [New Search]