These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evolving Devil's Staircase Magnetization from Tunable Charge Density Waves in Nonsymmorphic Dirac Semimetals. Author: Singha R, Salters TH, Teicher SML, Lei S, Khoury JF, Ong NP, Schoop LM. Journal: Adv Mater; 2021 Oct; 33(41):e2103476. PubMed ID: 34436807. Abstract: While several magnetic topological semimetals have been discovered in recent years, their band structures are far from ideal, often obscured by trivial bands at the Fermi energy. Square-net materials with clean, linearly dispersing bands show potential to circumvent this issue. CeSbTe, a square-net material, features multiple magnetic-field-controllable topological phases. Here, it is shown that in this material, even higher degrees of tunability can be achieved by changing the electron count at the square-net motif. Increased electron filling results in structural distortion and formation of charge density waves (CDWs). The modulation wave-vector evolves continuously leading to a region of multiple discrete CDWs and a corresponding complex "Devil's staircase" magnetic ground state. A series of fractionally quantized magnetization plateaus is observed, which implies direct coupling between CDW and a collective spin-excitation. It is further shown that the CDW creates a robust idealized nonsymmorphic Dirac semimetal, thus providing access to topological systems with rich magnetism.[Abstract] [Full Text] [Related] [New Search]